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4 (3H) -QUINAZOLINONE, A MAJOR
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ABSTRACT
The 60 MHz 'H NMR spectra of 2-methyl-3-(2'-
hydroxymethylphenyl)-4(3H)-quinazolinone, 1, a major

metabolite of methagqualone, have been studied at 28° in
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CDCl; solution with the achiral reagent
tris(6,6,7,7,8,8,8~heptafluoro~2,2~dimethyl-3,5-
octanedionato)europium(III), 2, and the chiral reagent
tris([3-(heptafluoropropylhydroxy-methylene)-d-
camphorato]europium(III), 3. Lanthanide induced
shifts, [32), are consistent with major LSR binding at
the hydroxyl, and the diastereotopic hydrogens of the
CH, are clearly anisochronous. Substantial A8 values
and spectral simplification are achieved with 2 or 3.
Significant enantiomeric shift differences, AA(S, are
observed with 3 that should provide direct optical
purity determinations of 1. Results are discussed in
terms of LSR binding sites and hindered rotations about

selected bonds in 1.

NTRODUCTION

The drug methaqualone has been a sedative/hypnotic
and a strictly controlled substance of abuse of
considerable importance; over two hundred articles on
the chromatographic, spectroscopic and analytical
aspects of the compound have been cited in Chemical
Abstracts from 1972 to the first half of 1988.
Recently, extensive NMR studies of methaqualone
employing 1-D and 2-D 'H ana "c techniques as well as
lanthanide shift reagents (LSR) have been completed (1)

that encouraged us to undertake further investigations
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of related compounds. These present studies involve 2-
methyl-3-(2'-hydroxymethylphenyl)-4(3H) -quinazolinone,
1, which has been found to be a major metabolite of
methaqualone (2-14). The stereochemistry of the parent
compound, methaqualone, has lately been of particular
interest. Because of an energy barrier to rotation
about the single bond joining the two aromatic
moieties, this drug can exist as a pair of stable
enantiomers that are chromatographically resolvable
(15-19) and which exhibit unequal pharmacological
activity (17). Drug stereochemistry can have important
implications on pharmacological activity, toxicity and
legal classification and has been of ongoing interest
in our laboratories. The conversion of methaqualone to
1 was expected to raise the barrier to the biaryl
rotation because of the effective increase in group
size on going from methyl to hydroxymethyl. We
therefore anticipated that the enantiomers of 1 should
also be stable at ambient temperatures. In considering
studies with achiral and chiral LSR, we were
particularly interested in being able to compare
lanthanide binding sites in methaqualone and in 1,
because of the presence of an added potential binding
site in 1, i.e., the hydroxyl group. 1In addition to

examining lanthanide induced shifts,l}é, we considered
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the use of a chiral LSR to obtain possible enantiomeric
shift differences, ll[&& , that might permit direct
optical purity determinations of 1. Enantioselectivity
in the metabolism of methaqualone might thereby be
explored if a method were available for measuring
enantiomeric excess of 1. We employed the achiral
reagent tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-
3,5-octanedionato)eurcopium(III), 2, known as Eu(FOD),,
and the chiral reagent tris[3-heptafluoropropylhydroxy-
methylene) -d-camphorato]europium(III), 3, known as
Eu(HFC); or Eu(HFBC);. Techniques and principles for
the use of achiral and chiral LSR have been described
(20-26) .
EXPERIMENTAL

Racemic 1 free base was obtained from the Research
Technology Branch of the National Institute on Drug
Abuse (Rockville, MD) through the Research Triangle
Institute (Research Triangle Park, NC). The sample,
batch no. 2563-1022-58, was used as supplied without
further purification. Chloroform-d, (99.8 atom % D),
obtained from Aldrich Chemical Corp., Milwaukee WI
53201 or from Norell, Inc., Landisville NJ 08326, was
dried and stored over 3A Molecular sieves. Shift

reagents were obtained from Aldrich and were stored in
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a desiccator over P,0;. Materials were used as
received except as noted.

For runs with shift reagents, an accurately
weighed portion of drug was added to CDCl; [containing
about 0.5% tetramethylsilane (TMS) as internal
standard] in an NMR sample tube and dissolved by
shaking; increments of solid shift reagent were added
directly to the sample, dissolved by shaking, and the
spectra immediately obtained. Drug concentrations were
typically from 0.25-0.56 molal. The presence of
particulates in some solutions made filtration
necessary; some precipitate was observed during LSR
additions. Because of some losses on filtration,
actual drug concentrations and LSR:substrate molar
ratios must be considered approximate. Nominal values
are presented in the text and Figures. Filtering
through CDCl,-rinsed cotton (Pasteur filter pipet)
resulted in significantly sharper signals.

RESULTS AND DISCUSSION

The 60 MHz 'H spectrum of 1 in CDC1, at 28° showed
signals as follows (8, ppm): 8.20 (approx. d, J=8 Hz,
1H, Hg); ca. 7-7.9 (complex mult., 7H, other aromatic
H); 4.38 (s, 2H, Hmb): 3.7 (br s, 1H, OH); 2.15 (s, 3H,
CH;) . The doublet at lowest field is assignable to H;

because of carbonyl anisotropy. The assignment is
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consistent with our studies of methaqualone (1). All
of the seven remaining aryl hydrogens, H&7JJ'AUSU&'
appear as part of a complex envelope; only H is
distinct from the aryl signals. The two diastereotopic
hydrogens of the methylene group, Ha'b of CH,O0H, are
coincidentally isochronous at 60 MHz, appearing as a
slightly broadened singlet at 4.38 ppm. The broad
singlet of the exchanging OH appeared near 3.7 ppm,
somewhat concentration dependent. The CH; appeared as
a sharp singlet at 2.15 ppm. Increments of 2 were

added resulting in considerable spectral simplification

as a result of the lanthanide induced shifts, ZSS(LIS).
The LIS is defined as the chemical shift of a nucleus
with LSR present minus the chemical shift of that
nucleus for the unshifted substrate. Results with 2
added to 1 are summarized in Fig. 1. The
nonequivalence of the diastereotopic H, and H, is
clearly observed with their appearance as an AB quartet
with a characteristic geminal coupling constant of
approx. 13 Hz. This splitting allows assignment of the
H, signals, distinct from other doublets (at higher
2:1 molar ratios) which exhibit the smaller vicinal
coupling of adjacent hydrogens on the aryl rings.

While the distinction of the expected approximate
doublets of Hs ;. . is tentative since their 37 couplings

should be similar within experimental error, the
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Fig. 1. Variation of chemical shift, 8 (in ppm), with
molar ratio of 2:1. Note: Where plotted
points designate two or more nuclei, the
indicated chemical shift generally
corresponds to the approximate center of a
complex multiplet. See text.

indicated assignments appear relatively consistent with
the linear slopes of the corresponding lines in Fig. 1.
Most striking is the dramatic difference compared to
results with methaqualone (1) in which predominant LSR
binding occurred at the carbonyl. While some LSR
complexation at the carbonyl of 1 or at N-1 cannot be
ruled out, the major binding site for 1 appears to be
at the hydroxyl. The relatively unhindered primary OH

group would probably be preferred to the alternative
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sites both on steric and electronic grounds
(20,22,25,26). The strongest evidence is seen in the
relative slope magnitudes of Fig. 1, OH >> H, > H > H &
H;, > CH; > H,,xH,,, with the remaining aryl protons,

Hg 78,50 showing the smallest magnitudes. The

metabolic oxidation of methaqualone by which the 2'-
methylphenyl is converted to the 2'-hydroxymethylphenyl
of 1 thus results in a compound with a significantly
altered LSR binding site.

Because of the existence of methaqualone as a pair
of resolvable enantiomers of differing pharmacological
activity, and the efficacy of chiral LSR to permit
direct optical purity determinations, we extended our
studies of 1 using the chiral reagent, 3. These
results are summarized in Figs. 2 and 3. Induced shift
magnitudes are generally similar to results with 2,
with some differences. For example, at higher molar
ratios of 3:1, the H;, resonance appears to move
downfield past that of H;. The spectra at these higher
levels of 3 are more complex than with added 2 because
of enantiomeric shift differences,AAlXS, seen for
several nuclei when the chiral 3 is used. The
enantiomeric shift difference is the magnitude of the

difference in chemical shifts for corresponding nuclei
of a pair of enantiomers in the presence of a chiral

LSR. Substantial AASvalues are clearly observed for
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Fig. 2. variation of chemical shift, 8 (in ppm),
with molar ratio of 3:1. Note: Average
values are plotted where antipodal
differences occur. See Note for Fig. 1.

the OH, CH, and H, nuclei, which would be close to the
LSR bound to the hydroxyl oxygen and also close to the
region of molecular chirality, i.e., near the N,;-C,,
bond. Observation of ANDS confirms that rotation
about this hindered bond of 1 must be slow on the NMR
time scale (at 60 MHz and 28°). Locatior of a nucleus
close to a chiral center and to bound LSR has commonly
been found to favor AA5 It is of interest that at

lower 3:1 molar ratios, the upfield half of the
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Fig. 3. Variation of enantiomeric shift difference,AAg
(in Hz), with molar ratio of 3:1. Values
shown for some nuclei (e.g., Hy ) are
considered tentative and are not shown for
other nuclei (e.g., H,) because of
uncertainties due to overlaps with
interfering peaks. See text.

approximate AB quartet of the diastereotopic methylene

protons appears substantially broadened (with resultant
lower peak heights) relative to the downfield half.

The downfield and upfield signals have been assigned to
H, and H,, respectively. Presumably H, is broadened by

some AAB, more than H,. At higher 3:1 molar ratios,

the Hb signals are overlapped with peaks assigned to Hq
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and H;, and the AA5 values cannot rigorously be
assigned. Tentative ZSAB values for H,;, are shown in
Fig. 3. Assuming that the plots of AA(S for H, and
H, increase monotonically with added 3 , then H, should
actually display larger Ahé magnitudes than H,.

The observation of very large AAS for an

exchangeable hydrogen, OH, is quite striking. Despite
some line broadening, potential analytical utility for
direct optical purity determinations should be
possible. For example, with a 3:1 ratio of 0.401 and
[SAS‘of 63 Hz, the valley height above the baseline was
only 16% of the average height of the peaks for each
enantiomer's OH signal. The H, signal is also
potentially useful. However, the methyl signal appears
to be most suitable for determining enantiomeric
excess, particularly because of its favorable signal-
to-noise ratio. We observed valley heights of 13 and
17% of the average peak heights for the methyl signals
at 3:1 ratios of 0.774 and 1.05, respectively.
Detection of as little as 5-7% of a minor enantiomer
should be feasible. The absence of interfering signals
would make this a non-critical technique. The use of
this chiral LSR method appears to be the first report
of a potential technique for direct optical purity

determinations of 1.
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CONCLUSIONS
We have reported the use of the achiral LSR,

Eu(FOD);, 2, and the chiral LSR, Eu(HFC);, 3, for 'H NMR

spectral simplification of racemic 1. The potential
utility of 3 for direct optical purity determinations
of samples of 1 has been shown. Predominant binding of
the europium, for either 2 or 3, appears to occur at
the hydroxyl; relative magnitudes of Aé and AA(S are
consistent with this as the favored binding site. The
availability of a direct method for measuring
enantiomeric excess of 1 should allow studies of
enantioselectivity in the metabolism, distribution and
excretion of methaqualone with respect to a major

metabolite, 1.
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